The Oxford Research Encyclopedia of Climate Science is now available via subscription. Visit About to learn more, meet the editorial board, or recommend to your librarian.

Dismiss
Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, CLIMATE SCIENCE (climatescience.oxfordre.com). (c) Oxford University Press USA, 2016. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 23 May 2018

Summary and Keywords

Classic paradigms describing meteorological phenomena and climate have changed dramatically over the last half-century. This is particularly true for the continent of Africa. Our understanding of its climate is today very different from that which prevailed as recently as the 1960s or 1970s. This article traces the development of relevant paradigms in five broad areas: climate and climate classification, tropical atmospheric circulation, tropical rain-bearing systems, climatic variability and change, and land surface processes and climate. One example is the definition of climate. Originally viewed as simple statistical averages, it is now recognized as an environmental variable with global linkages, multiple timescales of variability, and strong controls via earth surface processes. As a result of numerous field experiments, our understanding of tropical rainfall has morphed from the belief in the domination by local thunderstorms to recognition of vast systems on regional to global scales. Our understanding of the interrelationships with land surface processes has also changed markedly. The simple Charney hypothesis concerning albedo change and the related concept of desertification have given way to a broader view of land–atmosphere interaction. In summary, there has been a major evolution in the way we understand climate, climatic variability, tropical rainfall regimes and rain-bearing systems, and potential human impacts on African climate. Each of these areas has evolved in complexity and understanding, a result of an explosive growth in research and the availability of such investigative tools as satellites, computers, and numerical models.

Keywords: climate, Africa, tropical rainfall, ITCZ, land atmosphere interaction, climate change, West African monsoon, desertification, mineral dust

Access to the complete content on Oxford Research Encyclopedia of Climate Science requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.